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Protein motors play a central role in many cellular functions. Due to the small size of
these molecular motors, their motion is dominated by high viscous friction and large
thermal fluctuations. There are many levels of modeling molecular motors: from simple
chemical kinetic models with a small number of discrete states to all atom molecular
dynamics simulations. Here we describe a mathematical framework for an intermediate
level of description. In this approach the major conformational changes of the motor
protein are treated as continuous motions and changes in the chemical state of the
motor are modeled as discrete Markov transitions. We discuss a numerical method for
solving the Fokker-Planck equations that result from this mathematical framework and
describe its extension to solving motor-cargo systems. We show that when the potential
is discontinuous, detailed balance is a necessary condition for numerical convergence.
We study the behavior of a motor-cargo system where the motor is driven by a tilted pe-
riodic potential. In particular, we derive a formula for the effective diffusion coefficient
in the weak spring limit and analytically show that if the ratio of the motor size to that
of the cargo is sufficiently large, then the velocity does not obtain its maximum value
in the weak spring limit.

KEY WORDS: Langevin equation, Fokker-Planck equation, detailed balance, motor-
cargo system, effective diffusion

1. INTRODUCTION

Protein motors play a central role in many cellular functions. For example, kinesin
drives intracellular vesicle transportation, and the V-ATPases regulate intracellular
acidity. Due to the small size of protein motors, the motor motion is dominated
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by high viscous friction and large thermal fluctuations.(1) As a result, the driving
mechanisms that underlie macroscopic motors do not in general extend to molec-
ular motors. In both macroscopic and molecular motors, a localized chemical
reaction can be used to generate the net force required for unidirectional motion.
This mechanism of generating directed motion is called a power stroke motor.(2,3)

However, for the case of molecular motors, unidirectional motion can be generated
by a completely different mechanism. Consider a motor confined to move in a sin-
gle spatial dimension. In this case blocking thermal fluctuations in one direction is
sufficient to generate a unidirectional motion driven only by diffusion. This mech-
anism of generating a unidirectional motion is called a Brownian ratchet.(4–8) Of
course, the power stroke motor and Brownian ratchet are not mutually exclusive,
and it is quite possible that biological molecular motors use a combination of
these two mechanisms. There are many levels at which the dynamics of molecular
motors can be modeled. These range from simple chemical kinetic models with a
few discrete states to all atom molecular dynamics simulations. Here we adopt a
modeling approach of an intermediate level. We model the major mechanical mo-
tion of the molecular motor as a continuous movement and model changes in the
chemical state of the reaction sites as discrete Markov transitions. For molecular
motors, the length scales over which inertial effects are important are much shorter
than the characteristic length scales of the motor’s motion. So we can safely ignore
inertial effects. The effect of thermal fluctuations, however, must be included in
the modeling framework.

The rest of the paper is organized as follows. In Sec. 2, we first review the
mathematical framework for modeling the continuous motion of molecular mo-
tors. Except for a few simple cases, the Fokker-Planck equations resulting from
this approach need to be solved numerically. In Sec. 3, we review a robust nu-
merical method for solving Fokker-Planck equations. One important aspect of the
numerical method is that it exactly preserves detailed balance. This feature ensures
that the method works well even if the potential in which the motor is moving is
discontinuous. We discuss conditions for exact solutions at discontinuities in the
potential, and relate these conditions to conservation of probability and detailed
balance. We show that when the potential is discontinuous, detailed balance is a
necessary condition for numerical convergence. We study the asymptotic behavior
of the discrete system that results from the numerical method in the limit that time
goes to infinity.

Next we extend the numerical method to solve the 2D Fokker-Planck equa-
tions that govern motor-cargo systems. Both in vivo and in vitro molecular motors
are coupled via an elastic linkage to cargo that is in general much larger than
the motor. For example, in the cell kinesin and dynien transport organelles along
microtubules, whereas in single molecule experiments latex beads that can be ma-
nipulated with laser traps are used as cargo.(9) Several theoretical investigations
have demonstrated the importance of considering the properties of the motor/cargo
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linkage when studying the behavior of motor proteins. Elston and Peskin demon-
strated that a flexible linkage provides a mechanism for increasing the average
velocity of the motor/cargo system.(10) In an investigation of energy transduction
in the bacterial flagellar motor, Xing et al.(11) showed that a mechanism in which
the motor and viscous load are connected through a soft elastic linkage could
account for all the motor’s experimentally measured torque-speed relationships.
And Raj and Peskin(12) recently demonstrated that chromosome flexibility can
act as a ’velocity governor’ during mitosis. That is, consistent with experimental
observations, the velocity with which chromosomes are transported is essentially
independent of their length when models that include chromosome flexibility
are considered. Another important reason for considering models that take into
account the flexibility of the motor/cargo linkage is that in most experimental
arrangements, it is the motion of the cargo and not the motor that is observed.
Therefore, deciphering the motor mechanism from measurements of the cargo
requires weeding out the effects that result from the elasticity of the linkage. In
Sec. 4, as an example for applying the numerical method, we study the behavior
of a motor-cargo system where the motor is driven by a tilted periodic potential.
Our numerical investigations reveal that if the ratio of the motor size to that of the
cargo is sufficiently large, then the velocity does not increase as the stiffness of
the linkage connecting the motor to its cargo decreases. We end with a theoretical
analysis that explains this observation.

2. MARKOV FOKKER-PLANCK SYSTEMS: A MATHEMATICAL

FRAMEWORK FOR MODELING MOLECULAR MOTORS

A molecular motor, in general, has many degrees of freedom. Of these degrees
of freedom, one is associated with the unidirectional motion of the motor. For
example, a flagellar motor rotates the flagellar filament with respect to the cell
body,(13,14) a kinesin dimer walks along a microtubule,(9,15−17) and the γ shaft of
the FoF1 ATP synthase rotates with respect to the α3β3 hexamer.(2,18−21) In many
studies of molecular motors, the mechanical motion is followed only along the
dimension of the unidirectional motion.(5,7,22,23) Because the time scales associated
with the other degrees of freedom are usually much shorter than the time scale
set by the average motor velocity, the effects of these fast variables on the motor’s
behavior can be incorporated into a mean field approximation for the potential
that drives the unidirectional motion.

2.1. Langevin Equation with Inertia

We start with the simple case of a small particle in a fluid environment moving
in one dimension and subject to a potential, φ(x), where x is the coordinate of
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the particle. In addition to the force derived from the potential φ(x), the particle
experiences a viscous drag force and a Brownian force. Both the drag force and
the Brownian force arise from collisions of the particle with the surrounding fluid
molecules. The drag force on the particle, −ζ u, is proportional to the velocity, u,
where ζ is called the drag coefficient. The drag force always opposes the particle’s
motion. The Brownian force on the particle has zero mean and is modeled as
Gaussian white noise. The stochastic motion of the particle is governed by the
Langevin equation (Newton’s second law):

m
du

dt
= −ζu − φ′ (x) +

√
2kBT ζ

dW (t)

dt
(1)

where m is the mass, x the particle’s position, and kBT is the Boltzmann constant
times the absolute temperature. In the above equation, W(t) is a standard Weiner
process satisfying W (t + s) − W (t) ∼ N (0, s). The magnitude of the Brownian
force is related to the drag coefficient, and is given by

√
2kBT ζ . This is a result of

the fluctuation-dissipation theorem.(24)

2.2. Inertial Time Scale and Reduction

to the Overdamped Langevin Equation

Equation (1) has three different time scales: the time scale for the motor to
forget about its initial velocity (inertial time scale), the time scale associated with
motion derived from the potential φ(x), and the time scale associate with thermal
diffusion. Because of the small size of molecular motors, the inertial time scale is
in general the shortest time scale in the system. To illustrate this, we consider the
special case where φ(x) ≡ 0 and Eq. (1) becomes

du

dt
= − 1

t0
u + 1

t0

√
2D

dW (t)

dt
(2)

where D = kBT/ζ is the diffusion coefficient of the particle(1) and t0 = m/ζ has
the dimension of time. In this case, the particles velocity is given by

u (t) = exp

(−t

t0

)
u (0) + G1 (t)

where G1(t) is a Gaussian random variable, independent of the initial velocity,
with mean zero and variance given by

var [G1 (t)] = D

t0

[
1 − exp

(−2t

t0

)]

(see Appendix A for details). The initial velocity u(0) decays exponentially with
time scale t0. Additionally as t goes to infinity, the velocity distribution converges
exponentially with time scale t0 to the Maxwell-Boltzmann distribution. We shall
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call t0 the inertial time scale. We now show how t0 scales with particle size. Let
us consider a spherical particle with radius r. The mass and the drag coefficient of
the particle are, respectively, given by Ref. 1,

m = 4

3
πρr3, ζ = 6πηr,

where ρ is the density of the particle and η the viscosity of the surrounding fluid.
This implies that the inertial time scale t0 is proportional to the square of the
particle radius

t0 = m

ζ
= 2ρ

9η
r2

For small particles t0 is very small. For example, for a latex bead of radius 0.5 µm
in water, we have ρ = 1 g/cm3 = 10−21g/nm3, η = 0.01 poise = 10−9pNnm−2s, and
r = 500 nm. In this case the inertial time scale is t0 = 56 × 10−9s = 56 ps, which
is already much faster than time scales associated with the motion of molecular
motors. For smaller particles, such as proteins, the inertial time scale will be even
shorter. It is analytically and computationally convenient to consider the limit in
which t0 goes to zero (i.e., ignore the effect of inertia) and approximate Eq. (1)
using the overdamped Langevin equation

dx

dt
= −D

φ′ (x)

kB T
+

√
2D

dW (t)

dt
(3)

The reduction from (1) to (3) in the limit of small t0 is called the Einstein-
Smoluchowski limit.(25) To intuitively illustrate this reduction, we consider a spe-
cial case where uφ ≡ −φ′(x)/ζ is equal to a constant. In this special case, Eqs. (1)
and (3) become, respectively,

du

dt
= − 1

t0
u + 1

t0
uφ + 1

t0

√
2D

dW (t)

dt
(4)

dx

dt
= uφ +

√
2D

dW (t)

dt
(5)

Equation (4) produces the following expression for the particle’s position (see
Appendix A for details)

x (t) = x (0) + uφ t − [u (0) − uφ

]
t0

[
1 − exp

(−t

t0

)]
+ G2 (t) (6)

where G2(t) is a Gaussian random variable, independent of u(0) and uφ , with mean
zero and variance

var [G2 (t)] = 2D

{
t − 2t0

[
1 − exp

(−t

t0

)]
+ t0

2

[
1 − exp

(−2t

t0

)]}
(7)
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Using Eq. (5), the particles position is given by

x (t) = x (0) + uφ t +
√

2D W (t) (8)

Let us compare solution (6) with solution (8) for t � t0. In solution (6), for t �
t0, we have

uφ t0 � uφ t, G2 (t) ∼
√

2Dt N (0, 1)

A key feature of molecular motors is that the average velocity caused by the po-
tential φ(x) is several orders of magnitude smaller than the instantaneous velocity.
That is, the instantaneous velocity of the motor is approximately given by the
equipartition of energy. Thus, the instantaneous velocity at t = 0 is of the order

u(0) ∼
√

kB T
m , and for t � t0 we have

u (0) t0 ∼
√

kB T

m
· m

ζ
=
√

kB T

ζ
· m

ζ
=
√

Dt0 � G2 (t)

Therefore, for sufficiently long times solution (6) is well approximated by solution
(8). Of course, this is just an intuitive analysis based on the assumption φ ′(x)/ζ ≡
−uφ = const. A more rigorous analysis of the reduction from (1) to (3) can be
found in Ref. 25.

Note that the time scale for the reduction from (6) to (8) not only depends
on t0 but also on the initial velocity. If the initial velocity is a result of thermal

fluctuations then u (0) ∼
√

kB T
m and the distance traveled by this impulse is u(0)

t0 = (Dt0)1/2. Assuming D = 107 nm2/s and t0 = 10−13s, which are typical values
for proteins, then (Dt0)1/2 is on the order of 10−3 nm. Typical length scales for
motor movements are several nanometers. Therefore, it is clear we can safely
ignore the term in Eq. (6) that arise from the initial velocity. However, if the

initial velocity of a particle is much larger than
√

kB T
m , then the effect of the initial

velocity cannot be ignored. For example consider a particle of radius r = 5 µm
and density ρ p = 1 g/cm3 in air. The mass and the drag coefficient of the particle
are

m = 4π
3 ρpr3 = 5.236 × 10−10 g

ζ = 6πηair r = 1.696 × 10−6 g s−1

where ηair = 1.8 × 10−4 Poise is the viscosity of air. The diffusion coefficient of the
particle is D = kBT/ζ = 2.417µm2s−1 and t0 = m/ζ = 3.1 × 10−4s. Suppose
the particle is launched with an initial velocity of u(0) = 1.3 m s−1 and there is no
active driving force after the initial launch (uφ = 0). This is what happens in the
process of ballistospore discharge in mushrooms and basidiomycete yeasts.(26,27)

Substituting these values into Eq. (6), we see that 2 milliseconds after the initial
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launch, the displacement due to the initial velocity is about 400 µm = 0.4 mm
and the displacement caused by diffusion is less than 0.1 µm:

u (0) t0

[
1 − exp

(−t

t0

)]
≈ 402 µm,

√
var [G2 (t)] ≤

√
2Dt < 0.1 µm

In this case, it is clear that the effect of the initial velocity dominates the motion of
the particle even in a time period (2 milliseconds) that is more than 6 times
the time scale of inertia. Notice that the velocity fluctuations of the particle

caused by collisions with the surrounding air molecules is of the order
√

kB T
m =

0.88 × 10−4m s−1, which is at least 4 orders of magnitude smaller than the initial
velocity. This explains why the effect of the initial velocity u(0) = 1.3 m s−1 lasts
so long.

2.3. Fokker-Planck Equations

Now we rewrite Eq. (3) to accommodate molecular motor systems driven by
chemical reactions

dx

dt
= −D

[−F + ψ ′
S(x)]

kB T
+

√
2D

dW (t)

dt
(9)

The above equation is the overdamped Langevin equation for the stochastic motion
of a molecular motor driven by a potential ψS(x) and subject to an external force F.
In the absence of the external force, the motor’s average motion results from ψ S(x)
switching among a set of periodic potentials, each corresponding to a distinct
chemical state of the motor molecule. Consequently, in Eq. (9), the periodic
potential ψS(x) is time dependent and changes with the chemical state S(t) of the
motor system.(5,22,28)

Suppose the chemical reaction cycle that drives the motor has N states. The
stochastic evolution of the motor’s chemical state is modeled as a continuous time
Markov chain. Let {s1, s2, . . ., sN} be the set of chemical states of the motor and
let pi (t) = Prob[S(t) = si ], then the vector p = [p1, p2,. . .pN ] satisfies the equation

dp(t)

dt
= K(x) · p(t) (10)

The matrix K(x) = {ki j (x)} is the transition matrix. For j 
= i , ki j (x) = k j→i (x)
is the transition rate from occupancy state s j to state si . Note the transition rates in
general depend on the position of the motor x. The diagonal elements of K(x) are
defined as: k j j (x) = −∑i 
= j k j→i (x). As a result the transition matrix satisfies
the property

N∑

i=1

k j→i (x) = 0 (11)
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In this mathematical framework, the motor system is divided into two kinds of
processes: those that involve changes in the chemical state of the catalytic sites
and those that involve physical movement of the motor. Chemical transitions are
governed by the Markov chain defined by Eq. (10). Changes in the position of the
motor or its subunits are modeled as continuous motion along the potential ψ i (x)
of the corresponding chemical state si and are governed by Eq. (9).

In the ATP hydrolysis cycle of an ATPase motor, there are four chemical
states for each catalytic site:(18,29–31)

CS
ATP Binding←→ CS · ATP

Hydrolysis←→ CS · ADP · Pi
Pi Release←→ CS · ADP

ADP Release←→ CS

The ATP hydrolysis cycle involves more than just changes in the occupancy of
the catalytic site. For example, “ATP binding” might involve both a change of oc-
cupancy and a continuous conformational change. The sub-step of ATP diffusing
into a catalytic site and becoming weakly bound involves a change of occupancy
of the catalytic site and is modeled as a chemical transition (a jump) in the discrete
Markov model (10). On the other hand, the sub-step that the ATP goes from being
weakly bound to being tightly bound does not involve a chemical change in the
reactive site, but rather a conformational change of the protein. This change is
modeled as a continuous motion along the potential curve corresponding to the
ATP bound state. In molecular motors, the chemical transitions are generally co-
ordinated by the motor position. Thus, the transition rate k j→i (x) depends on the
motor position. The stochastic evolution of a motor system (mechanical motion
and chemical transitions) is governed by Langevin Eq. (9) coupled with the dis-
crete Markov model (10). This type of coupling between mechanical motion and
chemical reactions is often referred to as mechanochemistry.

All of the statistical properties of molecular motors, including the average
velocity and the effective diffusion coefficient, can be calculated from the proba-
bility density of the mechanochemical system. Consider an ensemble of motors,
each evolving independently in time according to Eqs. (9) and (10). Let ρ j (x, t)
be the probability density that the motor system is at position x and in occupancy
state s j at time t. The time evolution of ρ j (x, t) is governed by the Fokker-Planck
equation corresponding to (9) and (10):(25,32)

∂ρi

∂t
= D

∂

∂x

(−F + ψ ′
i (x)

kB T
ρi + ∂ ρi

∂ x

)
+

N∑

j=1

ki j (x)ρ j , i = 1, 2, . . . , N

(12)

This is the mathematical framework that often is used to study the mechanochem-
istry of molecular motors.(8,22,33−39)
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2.4. Fokker-Planck Equations with Discontinuous Potentials

In this section, we study Fokker-Planck equations with discontinuous poten-
tials. While real physical potentials do not have such discontinuities, these stylized
potentials often serve as informative and useful approximations. If the potential
ψ i (x) in Eq. (12) contains discontinuities, then at a discontinuity ψ i

′(x) is not de-
fined. As a result, the solution of (12) cannot be defined in the classical sense (i.e.,
as a smooth function that satisfies the partial differential equation everywhere).
For simplicity, consider the Fokker-Planck equation corresponding to Langevin
Eq. (3) without chemical reactions:

∂ρ

∂t
= D

∂

∂x

(
φ′ (x)

kB T
ρ + ∂ ρ

∂ x

)
(13)

In this subsection, we discuss how the exact solution of (13) with a discontinuous
potential may be defined and the conditions the exact solution must satisfy at
the discontinuity. We study the case where φ(x) is a tilted periodic function (i.e.,
φ(x + l) = φ(x) + �φ, where l is the period of the periodic portion of φ and �φ

is a constant) and is piecewise smooth. Without loss of generality, we assume that
there is only one discontinuity at xd in [0, l]. More specifically, we assume that
φ(x) is two smooth functions connected by the discontinuity. In other words, φ(x)
is smooth in [0, xd ] and [xd , l] with φ(x−

d ) = lim
x→xd− φ(x) and φ(x+

d ) = lim
x→xd+ φ(x).

At the discontinuity xd , φ
′(x) is not a regular function. If the system is

brought to equilibrium by placing reflecting boundaries at x = 0 and x = l, then
from equilibrium statistical mechanics the solution is given by the Boltzmann
distribution:

ρ(x) = 1

Z
exp

(−φ(x)

kB T

)
, Z =

∫ l

0
exp

(−φ(x)

kB T

)
dx

which is discontinuous at xd . Thus, we expect the time-dependent solution ρ(x, t)
also to be discontinuous at xd . Away from the discontinuity, the equilibrium so-
lution is smooth and satisfies the differential equation defined by setting the time
derivative equal to zero in Eq. (13). So it is reasonable to expect ρ(x, t) to be
smooth and satisfy the Fokker-Planck equation in the classical sense away from
the discontinuity. Now we study the conditions that ρ(x, t) must satisfy at the
discontinuity. For that purpose, we use conservation of probability to rewrite
Eq. (13) as

∂ρ

∂t
= −∂ J (x)

∂x
, J (x) = −D

(
φ′ (x)

kB T
ρ + ∂ρ

∂x

)

where J(x) is the probability flux at x and is defined to be positive for flow moving
toward the right. The first term in J(x) is due to transport driven by the potential
φ(x) and the second term results from Brownian diffusion. The first condition on
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ρ(x, t) is a direct consequence of conservation of probability. At the discontinuity
xd , the probability flux into the discontinuity must be the same as the probability
flux out of the discontinuity: J (x−

d ) = J (x+
d ). That is,

(
φ′ (x)

kB T
ρ + ∂ ρ

∂ x

)∣∣∣∣
xd−

=
(

φ′ (x)

kB T
ρ + ∂ ρ

∂ x

)∣∣∣∣
xd+

(14)

Unfortunately, condition (14) alone is not enough to uniquely determining the
equilibrium solution. For example, let us consider the function ρ(x) given by

ρ(x) =

⎧
⎪⎨

⎪⎩

C1 exp
(−φ(x)

kB T

)
, x < xd

C2 exp
(−φ(x)

kB T

)
, x > xd

(15)

For ρ(x) to be interpreted as a probability density, the constants C1 and C2 must
satisfy

C1

∫ xd

0
exp

(−φ (x)

kB T

)
dx + C2

∫ l

xd

exp

(−φ (x)

kB T

)
dx = 1

ρ(x) given in (15) satisfies the differential equation away from the discontinuity
and satisfies condition (14) at the discontinuity. But C1 and C2 have infinitely many
solutions. To uniquely determine the exact solution, we need to impose another
condition on ρ(x, t).

In modeling molecular motors, a discontinuous potential is simply a mathe-
matical abstraction. In reality, the discontinuity represents a very narrow transition
region in which the potential is smooth but changes rapidly from the value on one
side of the discontinuity to that of the other side. Thus, the solution for the dis-
continuous potential is interpreted as the limit of solutions corresponding to a
sequence of smooth potentials converging to the discontinuous potential. In the
sequence of smooth potentials, the discontinuity at xd is approximated by smooth
transitions over smaller and smaller transition regions. Thus, we replace the discon-
tinuous transition of φ(x) at xd by a smooth transition φε(x) over [xd − ε, xd + ε]
with φε(x) equal to φ(x) in the limit ε goes to zero . In the transition region
[xd − ε, xd + ε], the smooth potential and the corresponding smooth solution
satisfy

φε(xd − ε) = φ(x−
d ), φε(xd + ε) = φ(x+

d )

lim
ε→0

ρε(xd − ε, t) = ρ(x−
d , t), lim

ε→0
ρε(xd + ε, t) = ρ(x+

d , t)

and the probability flux satisfies

−D

(
φ′

ε (x)

kB T
ρε + ∂ ρε

∂ x

)
= Jd
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where Jd is the flux in the transition region. Multiplying both sides of the above
equation by the integration factor exp(φε(x)/kB T ) and integrating over [xd −
ε, xd + ε], we get

exp

(
φε(x)

kB T

)
ρε

∣∣∣∣

xd+ε

xd−ε

= − 1

D

∫ xd+ε

xd−ε

exp

(
φε(s)

kB T

)
Jdds

Taking the limit as ε → 0, we obtain

exp

(
φ
(
x+

d

)

kB T

)

ρ
(
x+

d , t
)− exp

(
φ
(
x−

d

)

kB T

)

ρ
(
x−

d , t
) = 0 (16)

Conditions (14) and (16) are the two conditions that ρ(x, t) must satisfy at the
discontinuity. As we will see later in the discussion of our numerical method for
solving the Fokker-Planck equation, condition (14) is satisfied automatically if
the numerical method is based on conservation of probability. Condition (16) is
related to detailed balance. Therefore, to design a good numerical method capable
of solving Fokker-Planck equations with discontinuous potentials, the method
must preserve detailed balance.

3. A NUMERICAL METHOD FOR SOLVING

FOKKER-PLANCK EQUATIONS

In, Ref. 40 a robust numerical method was designed for solving Fokker-
Planck Eqs. (12) and (13). Below, this numerical method will be referred to as
the WPE method. When the potential is smooth, the convergence of the WPE
method has been mathematically established in, Ref. 40 but that analysis is not
sufficient to completely explain the robust performance of the WPE method. One
of the advantages of the WPE method is that it works well even if the potential
is discontinuous. In this section, we first review the WPE method. Then we study
the condition of detailed balance within the context of the numerical method.
When the potential is discontinuous, we analyze the connection between detailed
balance for the numerical method and condition (16) for the exact solution at
the discontinuity. We show that detailed balance is a necessary condition for
convergence when the potential is discontinuous. The key component of the WPE
method is that a spatially continuous Markov process is approximated by a spatially
discrete Markov process (a jump process). In the last part of this section, we show
that over long time, the discrete Markov process exhibits an average velocity and
an effective diffusion.
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x
xj+1xj-1/2 xj+1/2xj-3/2 xj+3/2

Bj-1/2 Bj+1/2

Fj-1/2 Fj+1/2

xj-1 xj

Fig. 1. Spatial discretization of a Fokker-Planck equation without chemical reactions. The spatially
continuous Markov process is approximated using a jump process. In the jump process, the system is
restricted to the set of discrete sites {x j} and is allowed to jump only to adjacent sites.

3.1. The WPE Method

In this sub-section, we summarize the WPE method developed in Ref. 40
To illustrate the method, we start with Fokker-Planck equation (13), which does
not include chemical reactions. In the spatial discretization of (13), we divide the
period [0, l] into M cells of equal size h = l/M . The j-th cell is

[x j−1/2, x j+1/2], x j+1/2 = h

2
+
(

j − 1

2

)
h

The j-th cell is represented by its center (we call it a site) x j = ( j − 0.5) h. The
underlying stochastic evolution corresponding to Eq. (13) is a spatially continuous
Markov process. We approximate the continuous motion with as a jump process
(spatially discrete Markov process). In the context of molecular motors, the idea
of using a jump process to approximate a continuous Markov process originated
in Ref. 41 and in an unpublished result by C. Peskin.

As shown in Fig. 1, the system resides on the set of discrete sites {x j }. In a
single jump, it can only jump to an adjacent site. For a 1-D Fokker-Planck equation
without chemical reactions, x j has two adjacent sites: x j−1 and x j+1. Let p j (t) be
the probability that the system is at site x j at time t in the jump process. Since site
x j represents cell [x j−1/2, x j+1/2], p j (t) can be viewed as

p j (t) ≈
∫ x j+1/2

x j−1/2

ρ(x, t)ds ≈ h · ρ(x j , t)

Let F j+1/2 be the jump rate from x j to x j+1 (forward jump), and B j+1/2 be the
jump rate from x j+1 to x j (backward jump). The numerical probability flux through
x j+1/2 to the right side is

Jj+1/2(t) = Fj+1/2 p j (t) − B j+1/2 p j+1(t) (17)
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The time evolution of p j (t) is governed by the conservation of probability:

dp j

dt
= Jj−1/2 − Jj+1/2 = (Fj−1/2 p j−1 − B j−1/2 p j ) − (Fj+1/2 p j − B j+1/2 p j+1)

(18)

The jump rates are determined by local steady state solutions of the Fokker-Planck
equation. In calculating F j+1/2 and B j+1/2, we make two assumptions:

1. In [x j−1/2, x j+3/2], potential φ(x) is approximated by a linear function
going through two points φ(x j ) and φ(x j+1):

φ̃(x) = C + δφ j+1/2

h
· x, δφ j+1/2 = φ(x j+1) − φ(x j )

This assumption makes the method simple and easy to implement.
2. Let ρ̃(x) be the steady state solution of Eq. (13) in [x j−1/2, x j+3/2] using

the linear potential φ̃ (x) given above and subject to the conditions
∫ x j+1/2

x j−1/2

ρ̃ (x) ds = p j ,

∫ x j+3/2

x j+1/2

ρ̃ (x) ds = p j+1

We assume that the probability flux through x j+1/2 is the same in the jump
process as that of the continuous process defined by ρ̃ (x). This assumption
is a key component of the WPE method. Instead of using a Taylor series
expansion to construct the numerical method, the WPE method is based
on local steady state solutions. The consequence of this approach is that
detailed balance is preserved exactly and the WPE method works well
even if the potential is discontinuous.

The probability flux associated with ρ̃ (x) is derived in Ref. 40 and is given by

J̃ = D

h2
·

δφ j+1/2

kB T

exp
(

δφ j+1/2

kB T

)
− 1

(
p j − exp

(
δφ j+1/2

kB T

)
p j+1

)

Comparing it with the numerical flux given in (17), we obtain immediately

Fj+1/2 = D

h2
·

δφ j+1/2

kB T

exp
(

δφ j+1/2

kB T

)
− 1

, B j+1/2 = D

h2
·

−δφ j+1/2

kB T

exp
(−δφ j+1/2

kB T

)
− 1

(19)

δφ j+1/2 = φ
(
x j+1

)− φ
(
x j

)

It is important to notice that the jump rates given in (19) are always positive. A
more accurate method for calculating the transition rates can be found in Ref. 42.
However, this method requires the numerical evaluation of integrals.
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Fig. 2. Spatial discretization of a Fokker-Planck equation with chemical reactions. The spatially
continuous Markov process is approximated using a jump process. In the jump process, the system
is restricted to the set of discrete sites {(x j , si )} and is allowed to jump only to adjacent sites in the
motion direction or in the reaction direction.

3.2. The WPE Method for Fokker-Planck Equations with Reactions

We describe the WPE method for solving Fokker-Planck Eq. (12) that cou-
ples chemical reactions to the mechanical motion of the motor. In the spatial
discretization, we divide the period [0, l] into M cells of equal size h = l/M as
described previously. The site (x j , si ) represents the situation where the system is
in cell [x j−1/2, x j+1/2] and in occupancy state si .

As shown in Fig. 2, the system resides on the set of discrete sites {(x j , si )}.
In a single jump, it can only jump to an adjacent site in the motion direction (x)
or in the reaction direction (S). Figure 2 shows a special case where the chemical
reaction goes through the states {s1, s2, s3, . . ., sN} sequentially. In this case (x j ,
si ) has two adjacent sites in the spatial coordinate and two adjacent sites in the
reaction states. When more complicated reaction schemes are considered (x j , si )
will be connected to more than two states in the reaction direction.
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Let p(i)
j (t) be the probability that the system is at site (x j , si ) at time t. Let

F (i)
j+1/2 be the jump rate from (x j , si ) to (x j+1, si ) (forward jump), and B(i)

j+1/2
be the jump rate from (x j+1, si ) to (x j , si ) (backward jump). The net numerical
probability flux in the motion direction from (x j , si ) to (x j+1, si ) is given by

J (i)
j+1/2 (t) = F (i)

j+1/2 p(i)
j (t) − B(i)

j+1/2 p(i)
j+1 (t) (20)

where the jump rates are now

F (i)
j+1/2 = D

h2
·

δφ
(i)
j+1/2

kB T

exp

(
δφ

(i)
j+1/2

kB T

)
− 1

, B(i)
j+1/2 = D

h2
·

−δφ
(i)
j+1/2

kB T

exp

(
−δφ

(i)
j+1/2

kB T

)
− 1

δφ
(i)
j+1/2 = ψi

(
x j+1

)− ψi

(
x j

)− F · h

The net numerical probability flux in the reaction direction from (x j , si ) to (x j ,
si+1) is given by

I (i+1/2)
j (t) = ki→i+1(x j )p(i)

j (t) − ki+1→i (x j )p(i+1)
j (t)

The time evolution of p j
(i)(t) is governed by the conservation of probability:

dp(i)
j

dt
=
(

J (i)
j−1/2 − J (i)

j+1/2

)
+
(

I (i−1/2)
j − I (i+1/2)

j

)

3.3. Detailed Balance, Chemical Transition Rates

and Spatial Jump Rates

In modeling molecular motors, the transition rates in Eq. (12) for changes in
the chemical state cannot be specified arbitrarily. These chemical transition rates
are restricted by detailed balance. Detailed balance is a condition on the transition
rates that ensures that if the system is brought to equilibrium, the probability den-
sity is given by the Boltzmann distribution and there are no net physical or chemical
fluxes. Although detailed balance is an equilibrium property of the system and
molecular motors are operating in non-equilibrium mode, the transition rates in a
motor system still need to satisfy a detailed-balance-like constraint. To illustrate
this constraint, we consider a simple example: an ATPase motor with only one cat-
alytic site. The system has four occupancy state: E (empty), T (ATP), DP (ADP·Pi ),
and D (ADP). The free energy change caused by one ATP hydrolysis cycle is

�G = �G0 − kB T ln

(
[AT P]

[AD P] · [Pi ]

)

where �G◦ = −12.3 kB T is the standard free energy change (when all reactant
and product concentrations are one molar) of ATP hydrolysis.(43) At physiological
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conditions, −�G ≈ 20 kBT.(43) Let [ATP]E Q , [ADP]E Q , and [Pi ]E Q be the
equilibrium concentrations. That is, they satisfy

�G0 − kB T ln

(
[AT P]E Q

[AD P]E Q · [Pi ]E Q

)
= 0

Let ψ (E Q)
E (x) , ψ

(E Q)
T (x) , ψ

(E Q)
D P (x) , ψ

(E Q)
D (x) be the free energies as functions

of motor position for the four occupancy states at equilibrium. At equilibrium,
detailed balance has to be satisfied:

k0
E→T (x) [AT P]E Q

kT →E (x)
= exp

(
ψ

(E Q)
E (x) − ψ

(E Q)
T (x)

kB T

)

kT →D P (x)

kD P→T (x)
= exp

(
ψ

(E Q)
T (x) − ψ

(E Q)
D P (x)

kB T

)

kD P→D (x)

k0
D→D P (x) [Pi ]E Q

= exp

(
ψ

(E Q)
D P (x) − ψ

(E Q)
D (x)

kB T

)

kD→E (x)

k0
E→D (x) [AD P]E Q

= exp

(
ψ

(E Q)
D (x) − ψ

(E Q)
E (x)

kB T

)

For a set of non-equilibrium concentrations [ATP], [ADP], and [Pi ], let us define

ψE (x) = ψ
(E Q)
E (x) + kB T ln

(
[AT P]

[AT P]E Q

)

ψT (x) = ψ
(E Q)
T (x)

ψD P (x) = ψ
(E Q)
D P (x)

ψD (x) = ψ
(E Q)
D (x) + kB T ln

(
[Pi ]

[Pi ]E Q

)

The transition rates satisfy

k0
E→T (x)[AT P]

kT →E (x)
= exp

(
ψE (x) − ψT (x)

kB T

)

kT →D P (x)

kD P→T (x)
= exp

(
ψT (x) − ψD P (x)

kB T

)

kD P→D(x)

k0
D→D P (x)[Pi ]

= exp

(
ψD P (x) − ψD(x)

kB T

)

kD→E (x)

k0
E→D(x)[AD P]

= exp

(
ψD(x) − ψE (x) + A

kB T

)
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where

A = kB T

{
ln

(
[AT P]

[AT P]E Q

)
− ln

(
[Pi ]

[Pi ]E Q

)
− ln

(
[AD P]

[AD P]E Q

)}
= −�G

In general, the transition rates in Eq. (12) are constrained by the condition

k j→ j+1(x)

k j+1→ j (x)
= exp

(
ψ j (x) − ψ j+1(x)

kB T

)
for 1 ≤ j < N

(21)
kN→1(x)

k1→N (x)
= exp

(
ψN (x) − ψ1 (x) + A

kB T

)

where A = −�G > 0 is called the chemical affinity,(44,45) and is the maximum
amount of free energy available for driving the motor per reaction cycle. Here we
assumed that the reaction goes through all states sequentially in a cycle. Notice,
in particular, that the transition rate kN→1 does not correspond to the transition
from state sN back to state s1 of the current cycle. For N > 2, the transition from
state sN back to state s1 of the same cycle does not exist. The transition rate kN→1

corresponds to the transition from state sN to state s1 of the next reaction cycle.
The difference in free energy between state s1 of the current cycle and the state
s1 of the next cycle is �G. The situation is most confusing when a reaction cycle
has only 2 states as shown in Fig. 3.

In Fig. 3, there are two transitions from state s2 to state s1: k−
2→1 represents

the transition from state s2 backward to state s1 in the current cycle, and k+
2→1

represents the transition from state s2 forward to state s1 of the next cycle. All
these transition rates must satisfy detailed balance:

k+
1→2(x)

k−
2→1(x)

= exp

(
ψ1(x) − ψ2(x)

kB T

)

k−
1→2(x)

k+
2→1(x)

= exp

(
ψ1(x) − ψ2(x) − A

kB T

)

In Eq. (12), the transition rate k2→1 contains both k+
2→1 and k−

2→1.

k1→2(x) = k+
1→2(x) + k−

1→2(x)

k2→1(x) = k+
2→1(x) + k−

2→1(x)

As a result, for the transition rates k1→2 and k2→1, we have

k1→2 (x)

k2→1 (x)

= exp

(
ψ1 (x) − ψ2 (x)

kB T

)

This is sometimes viewed as the breaking of detailed balance. However, if we
view the components of k1→2 and k2→1 individually, all these transition rates
satisfy detailed balance.
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Fig. 3. Diagram of a chemical reaction in which each cycle has only 2 states. The meaning of transition
from state s2 to state s1 is ambiguous. There is a transition (k−

2→1) from state s2 backward to state s1

in the same cycle, and another transition (k+
2→1) from state s2 forward to state s1 of the next cycle.

Now we study the requirement of detailed balance on spatial jump rates.
At equilibrium, the probability density is given by the Boltzmann distribution
and the probability flux vanishes everywhere.(24) This is automatically satisfied in
differential Eq. (13). In the numerical method, the continuous differential equa-
tion is approximated by the master equation for a jump process. The numerical
probability flux is

Jj+1/2 = Fj+1/2 p j − B j+1/2 p j+1 = B j+1/2 p j

(
Fj+1/2

B j+1/2
− p j+1

p j

)

At equilibrium, p j is given by the Boltzmann distribution and we have

p j+1

p j
= exp

(
φ
(
x j

)− φ
(
x j+1

)

kB T

)

To enforce detailed balance, we require that the numerical probability flux vanish
everywhere at equilibrium, which leads to

Fj+1/2

B j+1/2
= exp

(
φ(x j ) − φ(x j+1)

kB T

)
(22)
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This is the condition of detailed balance on the spatial jump rates of the numerical
method. It is straightforward to verify that the jump rates given in (19) satisfy
detailed balance.

To demonstrate the importance of using a numerical method that preserves
detailed balance, we show that when the potential is discontinuous, detailed balance
is a necessary condition for the convergence of any numerical method. Suppose
the discontinuity is at x j+1/2 (of course, the index j changes with the numerical
grid size h). The numerical probability flux at x j+1/2 is

Jj+1/2 = Fj+1/2 p j − B j+1/2 p j+1 = 1

h

(
h2 B j+1/2

) p j

h

(
Fj+1/2

B j+1/2
− p j+1

p j

)
(23)

Suppose the numerical solution converges to the exact solution that satisfies con-
ditions (14) and (16) at the discontinuity. We have

lim
h→0

p j

h
= ρ(x−

d , t), lim
h→0

p j+1

h
= ρ(x+

d , t), lim
h→0

Jj+1/2 = finite (24)

Since the distance between x j+1 and x j is h, the spatial jump rates are, in general,
of the order

Fj+1/2 = O

(
1

h2

)
, B j+1/2 = O

(
1

h2

)
(25)

Multiplying (23) by h, taking the limit as h → 0, and using (24) and (25), we
obtain

lim
h→0

(
Fj+1/2

B j+1/2
− p j+1

p j

)
= lim

h→0
h

Jj+1/2(
h2 B j+1/2

) p j

h

= 0

which, when combined with (24) and condition (16) on the exact solution, leads
to

lim
h→0

Fj+1/2

B j+1/2
= lim

h→0

p j+1

p j
= ρ

(
x+

d , t
)

ρ
(
x−

d , t
) = exp

(
φ
(
x−

d

)− φ
(
x+

d

)

kB T

)

This corresponds to the condition of detailed balance on spatial jump rates (22).
Therefore, in the presence of discontinuities, detailed balance is a necessary con-
dition for the convergence of the numerical method.

The standard central difference method can also be cast into the form of (18)
with jump rates

F (C D)
j+1/2 = D

h2
·
[

1 − δφ j+1/2

2kB T

]
, B(C D)

j+1/2 = D

h2
·
[

1 + δφ j+1/2

2kB T

]

The central difference method does not preserve detailed balance. As a matter
of fact, at discontinuities of magnitude larger than 2 kBT, one of the jump rates
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is negative. That explains why the numerical solution of the central difference
method does not converge to the correct exact solution as observed in Ref. 40.

3.4. Average Velocity and Effective Diffusion Coefficient

of the Discrete System

For simplicity, we consider the discrete system (18) corresponding to differ-
ential Eq. (13).

Let r j→i be the jump rate from site j to site i in the jump process. This general
notation will be very convenient for the presentation below. Since the system is
allowed to jump only to adjacent sites, we have

r j→i = 0 for |i − j | > 1,

r j→ j+1 = Fj+1/2, r j→ j−1 = B j−1/2, r j→ j = − (Fj+1/2 + B j−1/2
)

To study the average velocity and effective diffusion, we write (18) in a slightly
different form. Let p j (n, t) be the probability that the motor is at site j in the n-th
period at time t. For p j (n, t), the index j is between 1 and M, and the index n is
between negative infinity and positive infinity. Let us put the probabilities at the
M sites within each period into a vector:

p (n, t) = (p1 (n, t) , p2 (n, t) , . . . , pM (n, t))T

The evolution equation for p(n, t) corresponding to (18) is

dp (n, t)

dt
= Lp (n, t) + L+p (n − 1, t) + L−p (n + 1, t) (26)

where L = {r j→i } is a tridiagonal matrix because r j→i = 0 for |i − j | > 1;
L+ = {r j→i+M} is a matrix with only one non-zero element (L+)1,M = rM→M+1 =
FM+1/2; and L− = {r j→i−M} is a matrix with only one non-zero element
(L−)M,1 = r1→0 = B1/2. The most important property of these three matrices
is

e (L + L+ + L−) = 0, e = (1, 1, . . . , 1)

The average velocity is defined as the limit as time goes to infinity of the mean
motor position divided by time (if the limit exists):

Va = lim
t→∞

∑∞
j=−∞

(
jh − h

2

)
p j (t)

t

= lim
t→∞

{∑∞
n=−∞

∑M
j=1 nlp j (n, t)

t
+
∑∞

n=−∞
∑M

j=1

(
jh − h

2

)
p j (n, t)

t

}
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The numerator of the second term in curly brackets is bounded by l so the limit of
the second term is zero. Thus, the average velocity is defined as:

Va = l lim
t→∞

∑∞
n=−∞ n

∑M
j=1 p j (n, t)

t

= l lim
t→∞

e
∑∞

n=−∞ np(n, t)

t
, e = (1, 1, . . . , 1)

Applying L’Hopital’s rule, we see that the average velocity is given by

Va = l lim
t→∞ e

∞∑

n=−∞
n

d

dt
p (n, t)

= l lim
t→∞ e

∞∑

n=−∞
n(L+ p(n − 1, t) − L+p(n, t) + L−p(n + 1, t) − L−p(n, t))

= l lim
t→∞ e(L+ − L−)

∞∑

n=−∞
p(n, t)

Here we have used Eq. (26), the property e (L + L+ + L−) = 0, and summation
by parts.

Let

p(t) =
∞∑

n=−∞
p(n, t),

then p(t) satisfies

dp(t)

dt
= (L + L+ + L−)p(t), ep(t) = 1 (27)

In Appendix B, we show that Eq. (27) has a steady state solution pS and show that
p(t) converges to pS as t → ∞. In terms of pS , the average velocity is given by

Va = le(L+ − L−)pS (28)

where pS satisfy

(L + L+ + L−)pS = 0, epS = 1 (29)

It is important to notice that to calculate the average velocity, we do not need to
follow a long time evolution of Eq. (26). Instead we only need to solve pS from
Eq. (29).
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The effective diffusion is defined as the limit of variance of the motor position
divided by 2 t (if the limit exists):

De = lim
t→∞

∑∞
j=−∞

[(
jh − h

2

)−∑∞
i=−∞

(
ih − h

2

)
pi (t)

]2
p j (t)

2t

= lim
t→∞

⎧
⎪⎨

⎪⎩

∑∞
n=−∞

∑M
j=1

[
nl −∑∞

m=−∞
∑M

i=1 mlpi (m, t)
]2

p j (n, t)

2t
+ I2

2t
+ I3

2t

⎫
⎪⎬

⎪⎭

where

I3 =
∞∑

n=−∞

M∑

j=1

[(
jh − h

2

)
−

∞∑

m=−∞

M∑

i=1

(
ih − h

2

)
pi (m, t)

]2

p j (n, t)

is bounded by l2 so the limit of I3/(2 t) is zero as t → ∞. The term I2 is given by

I2 = 2
∞∑

n=−∞

M∑

j=1

[

nl −
∞∑

m=−∞

M∑

i=1

mlpi (m, t)

](
jh − h

2

)
p j (n, t)

Applying the Cauchy–Schwarz inequality to I2, we have

|I2| ≤ 2l2

√√√√√
∞∑

n=−∞

M∑

j=1

[

n −
∞∑

m=−∞

M∑

i=1

mpi (m, t)

]2

p j (n, t)

As we will show below, the term inside the radical sign behaves like O(t). It
follows that I2/(2t) behaves like O(

√
t/t) and its limit is zero as t → ∞. Thus,

the effective diffusion is defined as:

De = l2 lim
t→∞

∑∞
n=−∞

∑M
j=1

[
n −∑∞

m=−∞
∑M

i=1 mpi (m, t)
]2

p j (n, t)

2t

= l2 lim
t→∞

e
∑∞

n=−∞ n2p(n, t) − (e∑∞
n=−∞ np(n, t)

)2

2t

Applying L’Hopital’s rule, we see that the effective diffusion is given by:

De = l2

2
lim

t→∞ e

{ ∞∑

n=−∞
n2 dp (n, t)

dt
− 2

(

e
∞∑

n=−∞
np (n, t)

) ∞∑

n=−∞
n

dp (n, t)

dt

}

= l2

2
lim

t→∞ e

{ ∞∑

n=−∞
[(2n + 1) L+p (n, t) − (2n − 1) L−p (n, t)]
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−2

(

e
∞∑

n=−∞
np (n, t)

)

(L+ − L−)
∞∑

n=−∞
p (n, t)

}

= l2

2
lim

t→∞ e

{
(L+ + L−)p(t) + 2(L+ − L−)

×
[ ∞∑

n=−∞
np(n, t) −

(
e

∞∑

n=−∞
np(n, t)

)
p(t)

]}

= l2

2
lim

t→∞ e {(L+ + L−) p (t) + 2 (L+ − L−) r (t)}
where

r (t) =
∞∑

n=−∞
np (n, t) −

(

e
∞∑

n=−∞
np (n, t)

)

p (t) , p (t) =
∞∑

n=−∞
p (n, t)

Here we have used Eq. (26), the property e (L + L+ + L−) = 0, and summation
by parts. In Appendix B, we prove that r(t) satisfies a modified version of Eq. (26)

dr(t)

dt
= (L + L+ + L−)r(t)

− [e(L+ − L−)p(t) − (L+ − L−)] p(t), er(t) = 0 (30)

Also in Appendix B, we show that Eq. (30) has a steady state solution rS and show
that r(t) converges to rS as t → ∞. In terms of pS and rS , the effective diffusion
is given by

De = l2

2
e
[
(L+ + L−) pS + 2 (L+ − L−) rS

]
(31)

where pS satisfies (29) and rS satisfies

(L + L+ + L−) rS = [e(L+ − L−)pS − (L+ − L−)
]

pS, erS = 0 (32)

Therefore, to calculate the effective diffusion, we only need to solve pS and rS

from Eqs. (29) and (32). It is not necessary to follow a long time evolution of
Eq. (26).

4. THEORETICAL AND NUMERICAL STUDIES

OF A MOTOR-CARGO SYSTEM

In this section, we study the behavior of a motor-cargo system in which the
motor is driven by a tilted periodic potential and the cargo is linked to the motor
via a linear spring. We start with the Langevin and Fokker–Planck equations
governing the stochastic evolution of the motor-cargo system, which has two
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spatial degrees of freedom: the position of motor and the position of cargo. We
describe briefly the extension of the WPE method to solving a motor-cargo system.
We calculate numerically the average velocity and effective diffusion and compare
the numerical results with theoretical predictions at various limits, some derived
in this paper and others derived previously in Refs. 10 and 46. In Ref. 47, it was
reported that when the ratio of the cargo’s diffusion coefficient to the motor’s
diffusion coefficient is not sufficiently close to zero, there exists an optimal spring
constant that maximizes the average velocity. At the end of this section, we provide
a theoretical explanation for this phenomenon.

4.1. Mathematical Description of a Motor-Cargo System

As shown in Fig. 4, the motor moves on a polymer track and is elastically
linked to its cargo. In this paper, we consider the case where the motor is driven
along the polymer by a tilted periodic potential. The drop in free energy that occurs
as the motor moves through a period of the potential is attributed to the chemical
reaction that drives the motor.

Positions are measured along an axis parallel to the polymer track. The
motor-cargo system is specified by two state variables, the position of the motor,
x, and the position of the cargo, y. In reality, the cargo moves in the three-
dimensional space subject to the steric constraint of the polymer track and the
elastic constraint of the link to motor. In this paper, we assume that the cargo
moves only along the direction of the polymer track. Since the motor moves only
along the polymer track and the cargo is linked to the motor, we do not expect that
this assumption significantly change the dynamic of the motor-cargo system. Also
by using new 2D and 3D optical force clamp techniques, it is possible to restrict
the motor’s cargo (in this case a bead) to the direction of polymer track.(48) The
stochastic evolution of the motor–cargo system is governed by a coupled Langevin

x

Motor

y

Cargo

Fig. 4. A motor-cargo system. A motor moves on a polymer track and pulls a cargo via an elastic link.
Positions are measured along an axis parallel to the polymer track. The position of motor is denoted
by x and the position of cargo is denoted by y.
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equations

dx

dt
= − DM

kB T

∂� (x, y)

∂ x
+
√

2DM
dW1 (t)

dt

dy

dt
= − DC

kB T

∂� (x, y)

∂ y
+
√

2DC
dW2 (t)

dt

where the total potential is

� (x, y) = ψ (x) − f0 · x + k

2
(x − y)2

Here, DM and DC are, respectively, the diffusion coefficients of motor and cargo;
k is the elastic constant of the link between motor and cargo; and W1(t) and
W2(t) are two independent standard Weiner processes. We have written the tilted
periodic potential driving the motor as a constant force f0 and a periodic potential
ψ(x): φ (x) = ψ(x) − f0 x. In general, for a linear spring, the elastic energy is
E(x, y) = k(x − y − L)2/2 where L is the rest length of the spring. For simplicity,
we have redefined y = y + L to get rid of the rest length L.

Let ρ(x, y, t) be the probability density that the motor is at position x and the
cargo is at position y at time t. The time evolution of ρ(x, y, t) is governed by the
Fokker-Planck equation

∂ρ

∂t
= DM

∂

∂x

(
1

kB T

∂�

∂x
ρ + ∂ρ

∂x

)
+ DC

∂

∂y

(
1

kB T

∂�

∂y
ρ + ∂ρ

∂y

)
(33)

To facilitate the analysis and presentation below, we introduce the following nota-
tion and functions. Consider the 1-D system

dx

dt
= − [ψ ′ (x) − f ]

kB T
+

√
2

dW1 (t)

dt
(34)

which describes the stochastic motion of an object with diffusion coefficient =
1, subject to a constant force f and a periodic potential ψ(x). The corresponding
Fokker-Planck equation is

∂ρ (x, y, t)

∂t
= ∂

∂x

(
ψ ′ (x) − f

kB T
ρ + ∂ρ

∂x

)
(35)

Let Va(f) denote the average velocity and De(f) denote the effective diffusion of
(35), as functions of f. These two functions can be computed accurately using
numerical formulas (28) and (31) given in the previous section. In general, Va(f)
and De(f) are non-linear functions of f unless the potential ψ(x) is a trivial one. It
can be shown that Va(0) = 0 and Va(f) is an increasing function of f. Notice that
De(f) is dimensionless and Va(f) has the dimension of velocity divided by diffusion
coefficient.
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The behavior of the motor-cargo system (33) in various limits has been studied
previously.

Let VM−C and DM−C denote, respectively, the average velocity and the ef-
fective diffusion of the motor cargo system (33). In Refs. 10 and 46 it was shown
that

1. When k → ∞ (the stiff spring limit), VM−C and DM−C are given by

VM−C = DM DC

DM + DC
Va( f0), DM−C = DM DC

DM + DC
De( f0)

2. When k → 0 (the weak spring limit), VM−C is the solution of the non-linear
equation:

VM−C = DM Va

(
f0 − kB T

DC
VM−C

)

3. When k → 0 (the weak spring limit) and DC /DM → 0 (the large cargo
limit), VM−C is given by

VM−C = DC

kB T
f0

In Appendix C, we show that
4. When k → 0 (the weak spring limit), DM−C is given by

DM−C = DC ·
DC

DM
· De ( f0 − fa) + (V ′

a ( f0 − fa) kB T
)2

(
DC

DM
+ V ′

a ( f0 − fa) kB T
)2

(36)

where fa is the average elastic force on the cargo from the motor and
satisfies

DM Va ( f0 − fa) = DC

kB T
fa

When k → 0 (the weak spring limit) and DC/DM → 0 (the large cargo
limit), DM−C is given by DM−C = DC .

4.2. Extension of the WPE Method to Solving Motor-Cargo Systems

Here we describe the 2D WPE method for solving motor-cargo systems that
was developed in Ref. 47. As shown in Fig. 5, to discretize Eq. (33) in the spatial
dimensions, we first divide (−∞,+∞) in the x-dimension into an infinite numbers
of periods of equal length l. The n-th period is [nl, (n + 1)l]. We then divide each
period into Mx cells of the equal size hx = l/Mx .

In the y-dimension, the elastic potential increases quadratically as the dis-
tance between y and x increases. For each period of x, we use a bounded
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site n, j( ) n =1, j = 20

Fig. 5. Spatial discretization of a motor-cargo system. The horizontal coordinate, x, is the position of
motor and the vertical coordinate, y, the position of cargo. For each period in x, we use a bounded
computational domain for y. As the motor moves forward from one period to the next, the computational
domain of y moves forward along with the motor. Solid circles represents sites used in computation.
Hollow circles represents sites not used in computations. For the purpose of illustration only, each
period in x is divided into Mx = 4 cells. The computational domain of y covers an interval of size
(2b + 1)l = 5l and is divided into 5 My = 15 cells. For each period of x, we have totally M = (2b + 1)
Mx My = 60 sites. A site is identified by a pair of indices (n, j) where n is the index of the period and
j is the index of the site within the period.

computational domain for y. As the motor moves forward, the cargo will fol-
low the motor. As a result, the bounded computational domain of y must move
forward as the motor moves forward from one period to the next in the x direc-
tion. For the n-th period, the motor position, x, is in [nl, (n + 1)l]. We do not
have a general method for determining how large the cargo grid should be A
priori. If the numerically computed probability near the grid boundary is suf-
ficiently small, then the cargo grid is adequate. Otherwise, a larger cargo grid
is needed. In practice, we use [(n − b)l, (n + b)l] as the computational domain
for y and determine the value of b by trial and error. The computational domain
of y is an interval of length (2b + 1)l. As shown in Fig. 5, if b = 2, then the
computational domain of y for the first period is [−l, 4l]. When x moves for-
ward to the second period, the computational domain of y changes to [0, 5l];
when x moves backward to the zeroth period, the computational domain of y
changes to [−2l, 3l]. In the y-dimension, we divide computational domain into
cells of the size hy = l/My . Thus, the computational domain of y is divided into
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(2b + 1)My cells. For each period in x, we have a total of M = (2b + 1)Mx My

cells, we define the center of each cell as a site. In each period of x, we have a total
of M = (2b + 1)Mx My sites and we number them 1, 2, . . ., M. For example, we
can number them column-by-column from top to bottom and from left to right
as shown in Fig. 5. These are the local indices within each period. In this way,
each site is associated with a pair of indices (n, j) where −∞ < n < +∞ is the
index of the period and 1 ≤ j ≤ M is the local index of the site within the period.
Sometimes we also refer to the global index of a site. For the site (n, j), its global
index is defined as jG = nM + j . So the sites in the zeroth period have global
indices 1, 2, . . . , M , and the sites in the first period have global indices M + 1,
M + 2, . . . , M + M . We use this infinite set of numerical sites to approximate the
two-dimensional space of the motor-cargo system. We discretize the continuous
Markov process represented by the Fokker-Planck equation as a jump process on
this infinite set of numerical sites. In the jump process, the system can jump from
a site to an adjacent site in the x-dimension or in the y-dimension. As shown in
Fig. 5, the computational domain (set of filled circles) changes when the motor
moves from one period to an adjacent one. Consequently, the problem in terms of
x and y is not periodic in x. The introduction of local index (j) within the computa-
tional domain of each period makes the problem numerically periodic in x. That is,
numerically, we only need to compute in the computational domain of one period
although the rate matrix contains transitions between adjacent sites in adjacent
periods.

Let p j (n, t) be the probability that the system is at site j (local index) in the
n-th period at time t. Let r j→i be the jump rate from site j to site i (global indices)
in the jump process. These jump rates are calculated using (19). Let us denote the
probabilities at the M sites within each period as the vector:

p (n, t) = (p1 (n, t) , p2 (n, t) , ..., pM (n, t))T

p(n, t) is governed by

dp (n, t)

dt
= Lp (n, t) + L+p (n − 1, t) + L−p (n + 1, t)

where L = {r j→i } contains transition rates within one period, L+ = {r j→i+M}
contains transition rates from one period to the next period, and L− = {r j→i−M}
contains transition rates from one period to the previous period. In the jump
process, the system can only jump to an adjacent site. In the two-dimensional
network of sites shown in Fig. 5, a site has at most 4 adjacent neighbors within
the period. So matrix L is sparse with at most 5 non-zero elements per column.
Matrices L+ and L− are even more sparse than L.

The evolution equation of p(n, t) is the same as Eq. (18). Therefore, the aver-
age velocity of the discrete motor-cargo system is computed by solving Eqs. (28)
and (29), and the effective diffusion is computed by solving Eqs. (31) and (32).
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4.3. Behavior of the Motor-Cargo System

We consider a motor-cargo system where the motor is driven by a tilted sine
potential. Specifically, the tilted sine potential is

φ1 (x) = A · sin

(
2π

l
x

)
− f0 · x

and the total potential of the motor-cargo system is(47)

� (x, y) = φ1 (x) + k

2
(x − y)2

Figures 6 and 7 show the effective diffusion and average velocity, respectively, of
the motor-cargo system versus the spring constant k. In both figures, the dashed
horizontal lines represent the weak and stiff spring limits discussed in the previous
subsection.

There is a surprising feature in Fig. 7. The maximum of the average velocity
is not attained in the weak spring limit. This observation seems to contradict the
result obtained in Ref. 10 that the average velocity of the motor-cargo system
decreases monotonically as k increases and the maximum is attained at k = 0.
However, notice that the result presented in Ref. 10 is for the limits of both k → 0
(weak spring) and DC /DM → 0 (large cargo) while in this paper the ratio DC /DM

is finite. Below we present a theoretical analysis on a piecewise linear potential to
show that when the ratio DC /DM is sufficiently large, the average velocity for k =

D
M
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Fig. 6. The effective diffusion versus the spring constant k for the motor-cargo system driven by the
tilted sine potential. Parameters used in simulations are: A = 8 kB T, kB T = 4.2 pN nm, l = 8 nm, f0 =
30 pN, DM = 9000 nm2/s, DC = 900 nm2/s.
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Fig. 7. The average velocity versus the spring constant k for the motor-cargo system driven by the
tilted sine potential. Parameters used in simulations are the same as listed in the caption of Fig. 6.

0 is smaller than that for k = ∞, and thus, the maximum cannot be attained at k
= 0.

We consider the piecewise linear periodic potential

φ2 (x)

kB T
=
{

�φ · (l1−x)
l1

, x < l1

0 l1 < x < l1 + l2
l1 = 5.5, l2 = 2.5, �φ = 240

In one period, φ2(x) consists of a constant force slope in [0, l1] and a flat step
in [l1, l1 + l2]. When k = ∞, the motor and cargo move together with diffusion
coefficient

D = DC DM

DC + DM

The time scale for the motor-cargo to slide down along the constant force slope in
[0, l1] is

t1 = 1

D
· l2

1

�φ

The time scale for the motor-cargo to diffuse over the flat step in [l1, l1 + l2] is

t2 = l2
2

2D

The ratio of these two time scales is

t1
t2

= 2

�φ
· l2

1

l2
2

≈ 0.04 � 1

Thus, the average velocity is dominated by time scale t2. We shall focus on time
scale t2 and ignore time scale t1 in the analysis below. When k = ∞, the average
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velocity of the motor-cargo system is approximately given by

VM−C {k = ∞} = l

t2
= 2

DC DM

DC + DM
· l

l2
2

In the limit k → 0, it takes a large change in the distance between the motor and
the cargo to change appreciably the elastic force. In particular, variations in the
force on the motor within each step do not significantly affect the elastic force
on the cargo. In the absence of a restoring force, it typically takes a time scale
of � tF ∝ (�d)2 /D to produce a fluctuation of size �d in the distance between
the motor and the cargo. The force change associated with �d is � f = −k�d.
With � f as the restoring force, it takes a time scale of � tR ∝ 1/ (D · k) to damp
out the fluctuation. The ratio of these two time scales is � tR/� tF ∝ k/ (� f )2.
We want to show that � f → 0 (with probability close to 1) as k → 0. For that
purpose, we only need to show � f ≤ 4

√
k (with probability close to 1) as k → 0.

If � f >
4
√

k, then we have � tR/� tF <
√

k → 0 as k → 0. It is clear that as k →
0 it is more and more unlikely to have fluctuations that results in a force change of
magnitude of 4

√
k or larger (such fluctuations will typically be killed even before

they are fully developed). Therefore, when k → 0, the force on the cargo from
the motor is approximately a constant, fa . In this case, the average velocity of the
cargo is given by

VC {k → 0} = DC

kB T
fa

For the motor-cargo system to have a larger average velocity at k = 0 than that at
k = ∞, we must have

VC {k → 0} > VM−C {k = ∞}
which implies that

α ≡ fa · l2

kB T
> 2

l

l2
· DM

DM + DC
(37)

The average velocity of the motor is mainly determined by the time scale of
diffusing a distance of l2 (from l1 to l1 + l2) against a load force, fa , from the
cargo. Using the analytic formula for the average velocity of a perfect ratchet
working against a load force,(40) we get

VM {k → 0} ≈ DM
l

l2
2

· α2

exp (α) − 1 − α
, α ≡ fa · l2

kB T

This approximation is not very accurate since potential φ2 does not provide exactly
a reflecting boundary at l1 and an absorbing boundary at l2. As we will see when
we compare with the numerical results, the theoretical prediction is good but a bit
off from the numerical results.
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Since the motor and the cargo are elastically linked, they must have the same
average velocity

DC

kB T
fa = DM

l

l2
2

· α2

exp (α) − 1 − α

which leads to

DC

DM
= l

l2
· g (α) , g (α) = α

exp (α) − 1 − α

Let β = DC/DM . (37) yields

α > 2
l

l2
· DM

DM + DC
= 2

l

l2
· 1

1 + β

It is straightforward to show that the function g(α) is a decreasing function of α.
Thus, β must satisfy

β <
l

l2
· g

(
2

l

l2
· 1

1 + β

)
, β = DC

DM

Solving this inequality yields β = DC/DM < 0.043. Therefore, we arrive at the
conclusion that for the motor-cargo system to have a larger average velocity at
k = 0 than that at k = ∞, the ratio DC/DM must be smaller than a threshold.
To verify the theoretical prediction obtained above, we run numerical simulations
with DC = 900 and DM varying. Figure 8 shows the average velocities for k = 0
and k = ∞ as functions of the ratio DC/DM . The left panel in Fig. 8 shows the
numerical results for the piecewise linear potential φ2(x). The critical value of the
ratio DC /DM is about 0.06 for φ2(x), a bit off from the predicted value of 0.043.
As we pointed above, this is caused by the perfect ratchet approximation used in
the theoretical analysis. The right panel in Fig. 8 shows the numerical results for
the tilted sine potential φ1(x). The critical value of the ratio DC /DM is about 0.009
for φ1(x).

5. CONCLUSIONS

We described a mathematical framework for studying the continuous motion
of molecular motors. In the mathematical framework, the continuous motor motion
is modeled by a Langevin equation, and the changes of chemical occupancy at
reaction sites are modeled by a discrete Markov process. We examined the time
scale of inertia and found that for molecular motors, the effect of the instantaneous
velocity can be safely ignored. After the effect of inertia is removed, the Langevin
equation is a continuous Markov process in the spatial dimensions. For calculating
average quantities (e.g., average velocity, effective diffusion), it is computationally
more efficient to follow the evolution of probability density instead of the stochastic
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Fig. 8. Average velocities for k = 0 and k = ∞ as functions of the ratio DC /DM . Left panel shows the
numerical results for the piecewise linear potential φ2(x). The right panel shows the numerical results
for the tilted sine potential φ1(x). In both panels, when the ratio DC /DM is large, the average velocity
for k = ∞ (stiff spring limit) is larger than the average velocity for k = 0 (weak spring limit). As the
ratio DC /DM decreases, the average velocity for k = 0 eventually exceeds the average velocity for k =
∞. The critical value of the ratio DC /DM is about 0.06 for φ2(x) and is about 0.009 for φ1(x).

motion of individual motors. In the mathematical framework, the probability
density is governed by the Fokker-Planck equation. We studied the case where
the potential is discontinuous. We derived the conditions for the exact solution
at discontinuities. We related these conditions to conservation of probability and
detailed balance, which shows why it is important to preserve detailed balance in
numerical methods.

The Fokker-Planck equations resulted from the mathematical framework, in
general, need to be solved numerically. We described a robust numerical method
for solving Fokker-Planck equations. The main idea of the numerical method is
to use a jump process to approximate a continuous Markov process and use local
solutions to determine the jump rates. One of the advantages of this approach is
that detailed balance is preserved exactly, which ensures that even if the potential
is discontinuous, the numerical method converges and it converges to the correct
solution. We showed that the discrete system exhibits an average velocity and an
effective diffusion as time goes to infinity. We derived the formulas for the average
velocity and the effective diffusion of the discrete system. We also extended the
numerical method to solving motor-cargo systems, which have two degrees of
freedom in spatial dimensions.

Using the mathematical framework and the numerical method, we studied the
behavior of a motor-cargo system where the motor is driven by a tilted periodic
potential. We derived the effective diffusion of the motor-cargo system in the weak
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spring limit (k → 0). When the ratio of the cargo’s diffusion constant to the motor’s
diffusion constant converges to zero (DC /DM → 0), the average velocity of the
motor-cargo system decreases monotonically with k and attains the maximum at
k = 0. Numerical results showed that this is no longer true for values of DC /DM

away from zero. We performed an intuitive analysis using a tilted piecewise linear
potential to show that for the motor-cargo system to have a larger average velocity
at k = 0 than that at k = ∞, the ratio DC /DM must be smaller than a threshold.
If the ratio DC /DM is larger than the threshold, then the maximum of the average
velocity is no longer attained at the weak spring limit (k → 0). In other words,
even for a motor-cargo system that is driven by a tilted periodic potential, if the
motor is not sufficiently small in comparison with the cargo, then k → 0 is not
the optimal stiffness of the linkage for maximize the average velocity. A similar
phenomenon is observed in the numerical results of Ref. 12.

APPENDIX A: SOLUTIONS OF EQUATION (4)

We first solve Eq. (4) for the particle velocity. Multiplying by the integration
factor and integrating from 0 to τ , we get

exp

(
τ

t0

)
[u(τ ) − uφ] = [u(0) − uφ] +

√
2D

∫ τ

0

1

t0
exp

(
s

t0

)
dW (s)

ds
ds

Expressing u(τ ) in terms of others, we have

u (τ ) = uφ + exp

(−τ

t0

)
[u(0) − uφ]

+
√

2D exp

(−τ

t0

)∫ τ

0

1

t0
exp

(
s

t0

)
dW (s)

ds
ds (38)

For a smooth function f (s),
∫ T

0 f (s) dW (s)
ds ds is interpreted as

∫ T

0
f (s)

dW (s)

ds
ds = lim

N→∞

{
N∑

j=1

f (s j )[W (s j+1) − W (s j )]

}

(39)

where s j = (j − 1) �s and �s = T/N. Inside the curly brackets on the right hand
side of (39), is the weighted sum of N independent Gaussian random variables,
each with mean = 0 and variance = �s. Consequently the sum is a Gaussian
random variable with mean = 0 and variance given by

var

{
N∑

j=1

f (s j )[W (s j+1) − W (s j )]

}

=
N∑

j=1

[ f (s j )]
2�s
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which converges to

lim
N→∞

{
N∑

j=1

[ f (s j )]
2�s

}

=
∫ T

0
[ f (s)]2ds

Therefore, for a smooth function f (s),
∫ T

0 f (s) dW (s)
ds ds is a Gaussian random

variable with mean = 0 and variance = ∫ T
0 [ f (s)]2 ds. Applying this result to

(38), we obtain

u(τ ) = uφ + exp

(−τ

t0

)
[u(0) − uφ] + G1(τ )

where G1(τ ) is a Gaussian random variable with mean = 0 and variance given by

var[G1(τ )] = 2D exp

(−2τ

t0

) ∫ τ

0

1

t2
0

exp

(
2s

t0

)
ds = D

t0

[
1 − exp

(−2τ

t0

)]

This is the solution for the particle velocity in Eq. (4). Now we calculate the
particle position in Eq. (4). Integrating (38) from 0 to t, we have

x(t) = x(0) + uφ t + [u(0) − uφ]t0

[
1 − exp

(−t

t0

)]
+ G2(t)

where G2(t) is

G2 (t) =
√

2D

∫ t

0

∫ τ

0

1

t0
exp

(
s − τ

t0

)
dW (s)

ds
dsdτ

=
√

2D

∫ t

0

dW (s)

ds

∫ t

s

1

t0
exp

(
s − τ

t0

)
dτds

=
√

2D

∫ t

0

dW (s)

ds

[
1 − exp

(
s − t

t0

)]
ds

G2(t) is a Gaussian random variable with mean = 0 and variance given

var [G2 (t)] = 2D

∫ t

0

[
1 − exp

(
s − t

t0

)]2

ds = 2D

∫ t

0

[
1 − exp

(−s

t0

)]2

ds

= 2D

{
t − 2t0

[
1 − exp

(−t

t0

)]
+ t0

2

[
1 − exp

(−2t

t0

)]}

This is the solution for the particle position in Eq. (4).
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APPENDIX B: EXISTENCE OF AVERAGE VELOCITY

AND EFFECTIVE DIFFUSION COEFFICIENT

In this appendix, we prove that for both Eqs. (27) and (30), there is a steady
state solution, and prove that the time evolving solution converges to the steady
state solution. In this appendix, we also derive Eq. (30).

We start with Eq. (27). Let B = L + L+ + L−. Matrix B satisfies eB = 0,
which implies that B is rank deficient and e is a left eigenvector for the zero
eigenvalue. By definition, all subdiagonal and superdiagonal elements of B are
positive (spatial jump rates). All diagonal elements of B are negative. These
properties of B lead to the conclusion that e is the only left eigenvector for the
zero eigenvalue of B, matrix B has rank M−1, and all other eigenvalues of B
are negative. Let u be the only right eigenvector for the zero eigenvalue of B. Let
Q = (u, u2, . . . , uM ) be the matrix that transforms B to its Jordan form. Expressing
p(0) in terms of (u, u2, . . . , uM ) yields

p(0) = αu + α2u2 + · · · + αM uM

Since span (u2, . . . , uM ) is an invariant sub-space with negative eigenvalues, it fol-
lows that lim

t→∞ p (t) = α u. Equation (27) is based on conservation of probability.

So we have e(αu) = ep(0) = 1. Let pS = αu. We conclude that

lim
t→∞ p (t) = pS, BpS = 0, epS = 1

Now we derive Eq. (30). It is straightforward to verify that er(t) = 0.

dr (t)

dt
=

∞∑

n=−∞
n

dp (n, t)

dt
−
[

e
∞∑

n=−∞
n

dp (n, t)

dt

]

p (t) −
[

e
∞∑

n=−∞
np (n, t)

]
dp (t)

dt

Using

dp (t)

dt
=

∞∑

n=−∞
[Lp (n, t) + L+p (n − 1, t) + L−p (n + 1, t)]

= (L + L+ + L−) p (t)
∞∑

n=−∞
n

dp (n, t)

dt
=

∞∑

n=−∞
n[Lp(n, t) + L+p(n − 1, t) + L−p(n + 1, t)]

= (L + L+ + L−)
∞∑

n=−∞
np(n, t) + (L+ − L−)p(t)

and

e
∞∑

n=−∞
n

dp (n, t)

dt
= e (L+ − L−) p (t) ,



Mathematical and Computational Methods for Studying Energy Transduction 71

we arrive at

dr(t)

dt
= (L + L+ + L−)

∞∑

n=−∞
np(n, t)

+ (L+ − L−)p(t) − [e(L+ − L−)p(t)]p(t)

−
[

e
∞∑

n=−∞
np(n, t)

]

(L + L+ + L−)p(t)

= (L + L+ + L−)r(t) − [e(L+ − L−)p(t) − (L+ − L−)]p(t)

which is Eq. (30). To study the steady state and convergence to the steady state
for Eq. (30), we first notice that because e is the only left eigenvector for the zero
eigenvalue of B, it is proportional to the first row of the inverse of matrix Q. As a
result, e satisfies

eu = 0, eu j = 0, j = 2, 3, . . . , M

Thus, we obtain two results for matrix B = L + L+ + L−.

• A vector v satisfies ev = 0 if and only if v can be expressed in terms of
(u2, . . . , uM ).

• Br = v has a solution if and only if ev = 0.

Consider v = [e (L+ − L−) pS − (L+ − L−)
]

pS . It satisfies ev = 0. Therefore,
there exists rS such that BrS = v and erS = 0. Let q(t) = r(t) − rS . It satisfies
eq(t) = 0 and

dq(t)

dt
= Bq(t) − [e(L+ − L−)(p(t) − pS) − (L+ − L−)](p(t) − pS)

Since lim
t→∞ (p(t) − pS) = 0 and q(t) is in an invariant sub-space with negative

eigenvalues, it follows that lim
t→∞ q(t) = 0. Therefore, we conclude that

lim
t→∞ r(t) = rS, BrS = [e(L+ − L−)pS − (L+ − L−)]pS, erS = 0

APPENDIX C: DERIVATION OF (36)

In this appendix, we derive intuitively the effective diffusion of the motor-
cargo system when the spring constant, k of the elastic link between the motor and
cargo is small (weak spring limit).

Let x(t) be the position of motor, y(t) the position of cargo, and f (t) the
elastic force on the cargo from the motor. f (t) = k[x(t) − y(t)] is stochastic. Let
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fa be the average of f (t) : fa = 〈 f (t)〉 where 〈•〉 denotes the mean. The stochastic
elastic force f(t) fluctuates around fa .

When k → 0, the fluctuations of [x(t) − y(t)] and f (t) behave like:

std[x(t) − y(t)] = O
(
k

−1
2
)
, std[ f (t)] = O

(
k

1
2
)

This can be argued intuitively by examining the 1-D motion of an object elastically
anchored to a fixed point. Let f (t) be the position of the object and f (t) the elastic
force on the object. Because of equi-partition of energy, at equilibrium, we have

k〈x2〉 = kB T , 〈x〉 = 0

which implies

std[x(t)] = O
(
k

−1
2
)
, std[ f (t)] = O

(
k

1
2
)

Let us consider a time scale of �t = O(k
−1
4 ) � 1. In a time interval of �t, we

have

• the motor moves by a distance of O(k
−1
4 ) � 1;

• the cargo moves by a distance of O(k
−1
4 ) � 1;

• the distance between the motor and cargo changes by an amount of
O(k

−1
4 ) � 1;

• the elastic force f (t) changes by an amount of

kO
(
k

−1
4
) = O

(
k

3
4
)� O

(
k

1
2
)= std[ f (t)]

In other words, over a time interval of �t , the fluctuations of f (t) are small relative
to the standard deviation of f(t). Thus, over a time interval of �t , the elastic force
is relatively a constant.

The stochastic motion of the motor is governed by the Langevin equation

dx

dt
= −DM

[ψ ′ (x) − f0 + f (t)]

kB T
+
√

2DM
dW1 (t)

dt

The evolution of the probability density is governed by the Fokker-Planck
equation

∂ρ(x, y, t)

∂t
= DM

∂

∂ x

(
ψ ′ (x) − f0 + f (t)

kB T
ρ + ∂ ρ

∂ x

)

Note again that the elastic force f(t) is relatively a constant over a time interval
of � t = O(k

−1
4 ) � 1. Thus, for a given value of f (t), over the time interval

[t, t + �t] the average and the variance of displacement of the motor are well
defined, and are approximately given by

〈x(t + �t) − x(t)| f (t)〉 = �t · DM Va( f0 − f (t))

var[x(t + � t) − x(t)| f (t)] = 2�t · DM De( f0 − f (t))
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where Va and De are the average velocity and effective diffusion of Eqs. (34)
and (35). As k → 0, the average velocities of the motor and the cargo are
respectively

VM = DM〈Va( f0 − f (t))〉 → DM Va( f0 − fa) as k → 0

VC = DC

kB T
〈 f (t)〉 = DC

kB T
fa

Since the motor and the cargo are linked, they must have the same average velocity.
Thus, as k → 0, the average elastic force fa satisfies the nonlinear equation:

DM Va( f0 − fa) = DC

kB T
fa

Note that because Va( f ) is an increasing function of f, the solution of this nonlinear
equation exists and is unique.

If we do coarse-graining over time scale of � t = O(k
−1
4 ) � 1, we have

dx = DM Va( f0 − f (t))dt +
√

2DM De( f0 − f (t))dW1(t)

dy = DC

kB T
f (t)dt +

√
2DC dW2(t)

Expanding Va( f0 − f (t)) around f (t) = fa and using the fact that f (t) − fa =
O(k0.5) is small, we obtain

d x = DM Va ( f0 − fa) dt − DM V ′
a ( f0 − fa) [ f (t) − fa] dt

+
√

2DM De ( f0 − fa)dW1 (t)

d y = DC

kB T
fadt + DC

kB T
[ f (t) − fa] dt +

√
2DC dW2 (t)

Eliminating [ f (t) − fa] in the above system and noticing that both DM Va( f0 − fa)
and DC/(kB T ) fa are equal to the average velocity of the motor-cargo system,
VM−C , we arrive at

d
[
DC (x − VM−C t) + DM V ′

a ( f0 − fa) kB T (y − VM−C t)
]

= DC

√
2DM De ( f0 − fa)dW1 (t) + DM V ′

a ( f0 − fa) kB T
√

2DC dW2 (t)

which leads to

〈
[DC (x − VM−C t) + DM V ′

a( f0 − fa)kB T (y − VM−C t)]2
〉

= C + 2t DC

[
DC DM De( f0 − fa) + (DM V ′

a( f0 − fa)kB T )2
]
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Therefore, the effective diffusion coefficient of the motor-cargo system is

DM−C = DC ·
[
DC DM De( f0 − fa) + (DM V ′

a( f − f0)kB T )2
]

(
DC + DM V ′

a ( f0 − fa) kB T
)2

= DC ·
DC

DM
· De( f0 − fa) + (V ′

a( f0 − fa)kB T )2

(
DC

DM
+ V ′

a( f0 − fa)kB T
)2

When DC/DM = 0, we have DM−C = DC .
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